
flO-flfffi  888 

UNCLASSIFIED 

ROBUST DETECTORS FOR VERV HEAVV-TAILED NOISEi'U) l7T~ 
PRINCETON UNIV NJ INFORMATION SCIENCES AND SVSTEHS LAB 
D NARREN ET AL  OCT 8b N00014-81-K-0146 

F/G 12/9    NL 



1-0    tu  Ei 
>»   13-5 

1.1     »?!•    IIIII2-C 
IZ 
• 4  5 

MC 

1-25 mil 1-4   HUIi-6 



00 
00 
00 

CM 
< 

D 
< 

SECUftlTY CLASSIFICATION QF THIS RAGE (W>*-t D»t» tnjtifd) , 

REPORT DOCUMENTATION PAGE 
2. OOVT ACCESSION NO. 

«•   TITLE (and Subllll«) 

Robust Detectors for Very Heavy-Tailed Noise 

READ INSTRUCTIONS 
BEFORE COMPLETING FORM 

S.   RECIPIENT'S CATALOO NUMBER 

I.   TYRE OR RERORT A RERIOO COVERED 

Preprint 

». PERFORMING ORC. RERORT NUMBER 

7. AUTMO«f«; 

Douglas Warren and John B. Thomas 

B.   CONTRACT OR GRANT NUMBE*r*j 

N00014-81-K-0146 

»      PERFORMING ORGANIZATION  NAME  AND ADORESS 

Information Sciences and Systems Laboratory 
Department of Electrical Engineering 
Princeton University, Princeton, NJ  08544 

10.   RROGRAM ELEMENT. PROJECT. TASK 
AREA • WORK UNIT NUMBERS 

NR  SR0-103 

II.   CONTROLLING OFFICE NAME AND ADORESS 

Office of Naval Research (Code 4HSP) 
Department of the Navy 
Arlington, VA  22217 

12. RERORT DATE 

October 1986 
IS.   NUMBER OF RAGES 

10 
14.   MONITORING AGENCY NAME A  AOORESSfH diKmrtnl tram Cantraltlng Olttc») IS.   SECURITY CLASS. (at tnla rapanj 

Unclassified 

IS«.   DECLASSIFICATION/DOWNGRADING 
SCMEOULE 

IS.    DISTRIBUTION  STATEMENT (et Ihl, R.porl; 

Approved for public release; distribution unlimited 

•7.   DISTRIBUTION STATEMENT (of (A* abtttaci «nr.r.K lit Block 30, It dlllmranl «M *•»•«; 

DTIC 
1ZLECTE 
FEB2 81989 

IS.   SURRLEMENTARV NOTES 

Appears in the Proceedings of the 
Communications, Control, and Computin 

ourth Annual Allerton Conference on 
s^IL, Oct. 1-3, 1986; pp. 226-235 

IS.   KEY WORDS (Conilnum an roror,» ,n, /(ntc<«vr and Identity my alack numaar) 

--^robust detectors, *>$*      ,     , *j 
non-Gaussian noise , 

J   - 
_  > 

20 .   ABSTRACT (Canilnua an taaaiaa »Id» H nacaaaa/y and Idonitly ar Black ntmaat) 

"""^X This paper treats the robust detection problem for the case where the 
noise mixture model is not strongly unimodal; that is, has heavier than expo- 
nential tails. Under a constraint on the support of the contaminating density, 
an optimal detector is derived. Its performance is investigated using both 
computer-generated noises and noise records from underwater noise fields. r-gener; 

/ 

DO ;:sr». i<rt EDITION OR I MOV «» IS OBSOLETE 
S/N 010I.LF-OU.4e01 

SECURITY CLASSIFICATION OF THIS RAOE fWRaii Daia talawad) 



Robust Detectors for 
Very Heavy-Tailed Noise 

Douglas Warren 
University of Illinois at Chicago 

Chicago, IL  60607 
and 

John B. Thomas 
Princeton University 
Princeton, NJ  08544 

Abstract 
This paper treats the robust detection problem for the case where the noise 
mixture model is not strongly unimodal; that is, has heavier than exponential 
tails. Under a constraint on the support of the contaminating density, an 
optimal detector is derived. Its performance is investigated using both 
computer-generated noises and noise records from underwater noise fields. 

1 - Introduction 
Robust detection and estimation techniques have been developed for environments in 

which there is some uncertainty as to the exact distribution of the noise processes 
present[l,2,3]. In [4,5] the problem of detecting a signal in contaminated noise is discussed 
and the robust detector in terms of risk is found to be a censored probability likelihood test. 
The robust location estimator and small signal detector for nominal noise distributions hav- 
ing lighter than exponential tails (corresponding to strongly unimodal densities) are described 
in [3] and {6], respectively. 

Huber in [3] developed the basic theory for robust estimation of location for convex 
classes of distribution functions. The motivation for this work was the the desire to find a 
technique which diminished the inordinate influence of outliers on estimates. He found that 
this could be done by using the system which would give the MLE for location if the noise 
had the distribution with the smallest Fisher's Information in the given convex class of distri- 
butions. The discussion in §2 lifts his restriction on the distributions; it contains an investiga- 
tion of the analogous robust detector and location estimator for the case where the nominal 
has heavier than exponential tails. The paper concludes with the results of some simulations 
which were performed with the robust detector developed in §2. 

We will discuss robust detection of a small signal in independent identically distributed 
mixture noise.  The distribution /i(x) of the noise is given by 

fi(x) - f[F(xi) = mi-e)G(Xi) + €//(*,-)], 0<e<l (1.1) 
<-i i-i 

where G is the known nominal distribution, H is the unknown contaminating distribution 
and F is the actual distribution of the individual observations. The univariate mixture 
model is given by 

F={l-c)G+cH     ,      U<£<1 (1.2) 

where G is the known nominal distribution and H is the unknown contaminant. Further- 
more, if G and // have densities g and h, respectively, we can write 

/ ={l-()g +C*     ,      0<e<l (1.3) 

where / is the density of F. 
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2 - Robust Estimation and Detection for Noise with a Non-Strongly 
Unimodal Nominal Density 

In [3,4] the least favorable distribution was developed for the mixture class of distribu- 
tions which have a strongly unimodal nominal density. This type of density is limited to 
those which have lighter than exponential tails. However, many of the noise environments 
commonly encountered in atmospheric and oceanographic applications have been found 
[7,9,10] to have distributions which are much heavier tailed than exponential. It therefore 
seems proper to investigate the robust problem for very heavy tailed distributions. 

We will find the robust small-signal detector and M-estimator for the mixture class of 
distributions having what will be called non-strongly unimodal nominal densities. This class 
is defined as follows. 

Definition 1. A unimodal density g is called non-strongly unimodal if it satisfies the follow- 
ing conditions: 

i)  sgn [—-—(x—c)} = sgn [x—c] some real c . 
g 

ii)   There exist Px and P2 with P2 < c < P\ such that 
a) For x < P2 and x > P1,then —g'(x)/g(x) is monotonically de- 

creasing. 
b) For P2 < x < P1,then —g'(x)/g(x) is monotonically increasing. 

Hi)     lim   g'{x)/g{x)=0. 
I i I-»oo 

For simplicity we will assume throughout this section that c=0. Note that if g is symmetric 
and c=0 then P2 = —Pi- 

Cauchy noise is an example of a distribution having a non-strongly unimodal density. 
Unfortunately, the moments of the Cauchy distribution are undefined. However, during many 
practical applications, the extreme tails would be truncated by the signal processor so that we 
can, if it seems appropriate, model a noise process as Cauchy within some finite interval of 
the observation space.   Over such an interval all moments exist and are finite. 

The members of the Johnson family [7,9,11] of distributions also have non-strongly uni- 
modal distributions. Willett [9] found that a member of this class closely modeled the noise 
produced by shrimp along the ocean floor. Johnson noise is generated by the following 
memoryless transformation on Gaussian noise: 

x = X sinh 

Here z is an observation from a unit normal process and x is an observation from the gen- 
erated Johnson process. The parameter 6 controls the tail weight; very large 6 produces a 
nearly Gaussian process; and X is a scale parameter given by 

X = 
2a2 

2 

- 1 

1/2 

where a2 is the variance of the Johnson process. Because 6, and hence the tail mass, is 
allowed to vary continuously, the Johnson family can afford a good basis for approximating 
distributions with very heavy tails. 

We will now investigate the properties of the absolutely continuous mixture density 
function / 

/ = (i-c), + eh (2.1) 
where g is a non-strongly unimodal density and h is any density function for which the 
resulting / is absolutely continuous. We will also assume in this section that / is finite, uni- 
modal and attains its maximum at z=0. This assumption is reasonable since many distribu- 
tions encountered in nature are unimodal and we place the mode at zero without loss of gen- 
erality.  Hence, we have added the constraint that (h'(x) is less(greater) than — (1— e)g'(x) for 
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x greater(less) than zero. 
Fact 1.   The density f is not strongly unimodal. 

Proof. From the definition of non-strongly unimodal we have 

lim   ^_ = 0. 
111—«>    9 

Then for any 6>0 there exists finite M>0 such that — g'(x)/g{x) < 6 for all x>M. Pick 
z0>M. Since both / and g are finite we have —log /(z0) + log g(z0) = r <oo. Furthermore, 
by the positivity of h, —log f (x) < —log g{x)+c, for all x, where c= —log (1— c). Assume / 
is strongly unimodal; that is, —log / is convex and, for positive x, dominates some line with 
constant positive slope k.  Pick any 6 between zero and k.  Then for Z\>ZQ 

-log / {zx) + log / (*0) > k{zx-z9) (2.2) 

and 

-log g(zx) + log g{z0) < 6 {Z^-ZQ). • (2.3) 

Combining (2.2) and (2.3) yields 

-log /(*,) + log g(zx) > -log f(z0) + log g(z0) + {k-5)(Zl-z0) (2.4) 

= r +(k-6){Zl-z0). 

But the right side of (2.4) can be made as large as desired by choosing Zy, hence it can be 
made larger than c and the positivity condition for h will be violated which, by contradic- 
tion, completes the proof. 
Fact 2.   If—f If has a limitf then 

lim    ^f- = 0 (2.5) 

The proof of Fact 2 is virtually identical to that of Fact 1. 

In light of Facts 1 and 2 we see that we cannot contaminate a non-strongly unimodal 
density and produce one which is strongly unimodal. Furthermore, if / is not strongly uni- 
modal then the derivative of —/' // must be negative for some positive arguments. In addi- 
tion, since / is unimodal, —f'(x)/f(x) is zero at the origin and positive for all positive 
values of x; therefore its derivative cannot be negative for all positive x. As a result it is not 
possible to fulfill the conditions of the lemma of the previous section if the nominal density of 
/ is non-strongly unimodal. 
Fact 3. // the nonlinearity n(x) is zero at i=±oo and at x=0 and if sgn [n(x)] = sgn [x] then 

EFrf  >0. 

Proof. Since n[x)>0 for z>0 and n(x)<0 for i<0, then if (x) must be positive for some 
interval (6,a) about the origin.   Furthermore, 

00 

Si =o 
—00 

Then, after separating the real line into (—00,6], (b,a) and [a,00) we have 
a 6 00 

0< /•/ =-JV -Iff. (2.6) 
i —00 a 

By the unimodality of / we have 
00 0 t a 00 

JVf  >f(b)\Sv' + Jrf)+f{a)\Jrf +/»/]= 0 (2.7) 

t For an example of a mixture density / for which —/' //  has no limit see [12]. 



which completes the proof. 
Let us now apply Fact 3. We are given two distribution functions F\ and F2 both of 

the form 

Fi = {l-e)G + cHit 1=1,2. 

with density functions fsubi(x) — dFj(x)/dx.  Let A = {x: rf(x)<0} and suppose 

Jhy = 1   and   Jh2 = 0. 
A A 

Then 

EFrf  < EFr,'. 

where as a consequence of Fact 3 

\EFir/\=EFirf, t=l,2. (2.8) 

Hence the numerator of the expression for efficacy and the denominator of that for asymp- 
totic variance (see [3,12]) are minimized by F%. Similarly, if we let 
B = {x:  \n(x)\ = a maximum} and suppose 

Jhx = 1   and   Jh2 = 0. 
B B 

Then 

EFlV
2 < EFtf. (2.9) 

Therefore, the denominator of the expression for efficacy and the numerator of that for 
asymptotic variance are maximized by F1. 

If A = B then n must be decreasing on the set where it is at its maximum, a condition 
which can only be satisfied if the A and B are identical sets of discrete points. As a result, 
the contaminant Hx would put all of its mass on a set of Lebesgue measure zero and would 
therefore be degenerate. Since we have constrained the problem so that a degenerate contam- 
inant is not allowable we can state Fact 4 as follows. 
Fact 4. Let C .be the set of all mixture distributions having finite, absolutely continuous, uni- 

modal densities. If n satisfies the conditions given in Fact S, then, for a non-strongly unimodal 
nominal density, it is not possible to maximize EFrf and minimize EFrf with the same distri- 
bution F£C. 

The underlying problem that Fact 4 formalizes is that we have no clear cut method by 
which to decide whether to put the contaminant mass where the nonlinearity is large in mag- 
nitude or where its derivative is negative. We will, in the remainder of this section, investi- 
gate the robust problem under the constraint that the support of the contaminant is limited 
to an interval. By limiting the allowable class of contaminants in this fashion we will be able 
to find a nonlinearity n0 and a distribution F0 = (1— e)G + (.HQ which satisfy 

mmEFfio' =EFon0, (2.10) 

maxE/r?0
2 = Ejr0»?o2 (2.11) 

^=1L 
and 

Jo 

where C* contains all mixtures with contaminants whose support is confined within some 
specified finite interval.  Clearly, if Eqs. (2.10) and (2.11) are satisfied, then 

min/(F) = /(F0), 
r f ", 

that is, FQ is the minimum Fisher's Information distribution in C*. 
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The robust detector and estimator for the class C* 

Let g be a non-strongly unimodal density function as in Definition 1 with c=0. Define 
the function 

p(x) = ' 

<7(ai)e 

</(a2)e 

9(x), 

*(»-«i) 

*(•*-*) 

a1<i<6i 

CL2>X >b2 

otherwise 

(2.12) 

where 

k = ^«.1 = ^2) 

and P2<a2<a1<P1 (see Definition 1). 
Fact 5. 

I^-(«,)I>   \^-(bi)l 
9 9 

(2.13) 

(2.14) 

Proof. We prove the fact for i=l; the proof for t'=2 is virtually identical. From the 
definition of p, we have p{a1)=g(ai) and P [b i)=g [b J; hence — log p{ai) = —log g(ai) and 
—log pibi) = —log <7(&i).  Therefore, 

f\^L-{z)-^Ua1}}dx=0. (2.15) 
a,     9 9 

By the definition of g  the integrand on the left side of (2.4.15) is positive for at<x<Pv 

Therefore, the integrand must be negative for some x between P± and bx.  But 

min    ^-{x) = ^-Abx) 
*eCi.»i)     9 9 

so the integrand must be negative at bh completing the proof. 

Note that 

Ar, o1<ar<61 

-P' {*)-. -*. 

-21 <*), 

b2<x<a2 

otherwise 

(2.16) 

which is non-decreasing on St = {b^b^), non-increasing on S2 = (—oo,62] U [^i*00) and is con- 
stant at its maximum magnitude on A = (62>a2l U [aiAi)- 
Fact 6   Given two functions pa and pu defined as in (2.15).   If 

(1) ka < ku then 

(2) |«J <   | aj/or ,=1,2. 

(S) —log pQ(x) < —log pw{x) for all x. 

(4) \kj >   |\J/ori-l,2. 

Proof. By Definition 1 and Eqs. (2.12) and (2.13) 

W and (2) => (3), 
and (3) => (4), completing the proof. 
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Assume, without loss of generality, that 

9 9 
Let o2 be chosen as the smallest number in {P2,c) such that 

JL^-(a2)<^-(a1) 

Define the function 

where A = {b2,a2} U [<»i,&i)- 

Ä(«i) = /[P -9}    o<ai<p, 
A 

(2.17) 

(2.18) 

Lemma. If g and —g'/g are continuous, then R(ai) is a monotonically non-increasing con- 
tinuous function of ax with range (0,oo). 
Proof.  See [12] 

The main result of this section is given by the following theorem. 
Theorem.   The minimum Fisher Information mixture distribution having the non-strongly 

unimodal nominal density g and contaminant supported on {b2,b{) has the density 

f0 = (l-t)g +eh0. (2.19) 

The density of of the contaminant is given by 

ek0(x) = ' 

(l-€)fo(fl,)e*(',-,)-,(»)] 

(l-()[g(a2)ek{x-ai)-g(z)} 

where 

k = 
(l-«){ff(«i)[l-«*(a,"*l)l + J/(a2)[l-e*(*9"as)] 

1*1 «8 

( + (l-e)  /j dx + fg dx 

a1<a;<61 

b2
<Cx^a2 

otherwise 

(2.20) 

(2.21) 

- ^(«1) = -fH«»), 

and the constants bit t =1,2 are found from 

log 9{0i) + JL—(a,-) |* - 0,-1 - log g{bi) = 0 ; 
9 

(2.22) 

b2<P2<a2<al<P1<b1.   If 9 and —g'/g are continuous then a minimum Fisher's Informa- 
tion distribution in the form of Eqs. (2.18)-(2.20) exists for all e between 0 and 1. 
Proof  See [12] 
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3 - Numerical Results 

In §2 we found the robust detector and estimator for the class of mixture noise distribu- 
tions having a non-strongly unimodal nominal density g . Because the function -g' /g was 
not monotonic we found it necessary to limit the support of the contaminant to an interval 
about the mode of the nominal density. For distributions satisfying this constraint the worst 
distribution in terms of Fisher's Information is given by Eqs. (2.19)-(2.21). The question 
which immediately comes to mind is: how does the robust detector perform if we violate the 
constraint on the support of the contaminant? 

For the duration of this section we will confine our investigation to the robust detector; 
the analagous conclusions which can be drawn for the estimation problem should be 
apparent. In this section we will introduce some numerical results which will lend some 
insight into the question posed at the end of the preceding paragraph. We will look at three 
different but related situations. In the first, we will investigate the performance of several 
different detectors when the mixture noise conforms to the restriction on the support of the 
contaminant. Secondly, we relax this restriction so that the interval on which the contam- 
inant is supported is a superset of the interval which was previously allowed. We then look 
at the performance of the same detectors as in the first case. Lastly, we investigate the per- 
formance of the robust detector for several different distributions which have support over 
the entire real line. 

All of the figures discussed in this section plot efficacy against the natural logarithm of 
the mixing constant e. For simplicity, we assume symmetric noise densities. The values for 
efficacy were computed using numerical integration. 

Figs. 1-4 plot the efficacies for the optimal, robust, linear and sign detectors. The nomi- 
nal density of the noise for these calculated values is given by 

9(s) - ^i-ll-K-l)*]-1^ exp{-l/2[6 sinh-1^)]2} (3.1) 

which is the expression for a Johnson density with parameter 6 ( see the discussion of John- 
son densities at the beginning of §2). For this work we us^d 6=1 and o=l. The contam- 
inant density is given by 

i2 

2<rc 

s/2x(rG 

h(x) = 

h ia j* 

s 1 
v2n(TG 

e 2°c\ - e 
2<rc

2 

dz  , 

o, 

-b <x <b 

otherwise 

(3.2) 

where, due to the symmetry we have imposed, 62 and b l from (2.20) have become -6 and 6 , 
respectively.  For Figs. 1 and 3 oG =1 and for Figs. 2 and 4 oG =10. 

As we know from §2, the efficacy of the robust detector cannot be any lower for any 
member of the class of mixture distributions satisfying the constraint on the support of the 
contaminant than it is for the worst distribution given by Eqs. (2.19)-(2.21). However, this 
tells us nothing about how well the detector can perform. Figs. 1 and 2 show that for the 
mixture density given by (3.1) and (3.2) the performance is not appreciably worse for the 
robust detector than it is for the detector which is optimal for those densities. Note that in 
Fig. 2 the performance is slightly worse than it is in Fig. 1. This appears to be due to the 
fact that for higher <rG more of the contaminant mass falls within the intervals (-6 ,-a ] and 
ja ,6 ). Within (-6 ,6), the nonlinearity for the robust detector has minimum slope and max- 
imum magnitude on these two intervals. From the discussion in the previous section, it is 
clear that this will tend to reduce the efficacy of the detector when compared with the case 
wherein the contaminant mass is more concentrated around the mode of the nominal density. 

-7- 



Figs. 3 and 4 plot the efficacy of the robust detector for the noise given by Eqs. (3.1) 
and (3.2) along with that for the sign and linear detectors. From these graphs we can readily 
see that the performance of the robust detector is far superior to that of the others, espe- 
cially that of the linear detector. Both the linear detector and the sign detector have been 
widely used and, at least in this case, it is apparent that better results are readily obtainable. 

Allowing the support of the contaminant to exceed the the interval (-b ,6 ) by a small 
amount appears to have little effect on performance. In Figs. 5-8 the contaminant is sup- 
ported on (-6 - 1/10,6 + 1/10); that is, it exceeds | 6 | by ten percent of the standard 
deviation of the nominal, which in this case is 0.1. There is a slight but largely insignificant 
change in the performance from the situation where the contaminant is confined to (-6 ,6 ). 

Figs. 9 and 10 compare efficacy for the robust detector in two different mixture noise 
environments. The first noise has the worst distribution as described in §2; the second has 
the same non-strongly unimodal nominal as the worst density and a contaminant which is 
supported on the entire real line. If, in fact, there exists a distribution which has minimum 
Fisher's Information for all mixtures with a given nominal then it follows that the detector 
which is optimal for that distribution must have its minimum efficacy for that same distribu- 
tion; that is, it must satisfy the saddlepoint condition. This is the crux of the robust prob- 
lem; to find a lower bound on the performance of a device for a set of possible circumstances 
under which the device may be operated. While we have not shown that the distribution 
given by the theorem of §2 has minimum Fisher's Information for the set of all mixture dis- 
tributions having a given non-strongly unimodal nominal (we have done so for those with 
contaminants having bounded support on (&2,&i)) we can st^ ^n<^ a l°wer bound for the 
performance for distributions having specified contaminants. 

In Figs. 9 and 10 we show the efficacy for the robust detector for the worst noise distri- 
bution and for a noise distribution with contaminant supported along the entire real line. In 
both cases the nominal distribution is Johnson with 6=1 and a=\. The contaminant is Nor- 
mal in Fig. 9 and is Johnson(<5=l) in Fig. 10. In both cases the variance of the contaminant 
is unity. We have also investigated a number of other contaminants including Cauchy, 
Laplace, Logistic, and Johnson with various values of 6. The results are very similar to Figs. 
9 and 10. From the figures it is apparent that, for the set of contaminants tested, the worst 
distribution provides a lower bound on performance, as we would expect. 
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